Iniciar sesiónRegistrarse
Joyllene Vivian

Joyllene Vivian

Jomo Kenyatta University of Agriculture and Technology

Kenia

Acerca deEventosCanalesComunidades
anywherepro badge

Prepárate para trabajar de forma remota con la evaluación Anywherepro

¡Aumenta tus posibilidades de conseguir tu trabajo híbrido o remoto soñado hoy!

Gana tu insignia

¡Hola, soy Joyllene Vivian!

Assistant Accountant en Apstar Sacco

I am a detail-oriented financial analyst with a Bachelor of Science in Financial Engineering from Jomo Kenyatta University of Agriculture and Technology. I have a strong background in financial modeling, accounting, data analysis, and forecasting, combined with hands-on experience in credit management and customer engagement. In my role as an Assistant Accountant at Apstar Sacco, I successfully managed loans recovery and debt collection processes, while my time as a Salesperson at Chamte Patisserie enhanced my communication and problem-solving skills. I am proficient in financial software, possess a deep understanding of financial markets and trends, and excel in generating insightful reports to support strategic decision-making. Currently pursuing CPA certification and a Data Analytics course at Amdari.io, I am passionate about financial management, analytics, and project leadership. I thrive in fast-paced environments and am committed to delivering value by applying my expertise to drive organizational success.

Redes sociales

Experiencia

Educación

Certificaciones y Distintivos

No se agregó certificaciones o distintivos

Proyectos

MODELLING FINANCIAL DISTRESS OF NSE LISTED FIRMS : A COMPARATIVE ANALYSIS OF ALTMAN Z SCORE AND LOGISTIC REGRESSION MODEL

Team member

This study compares the performance of Altman Z Score and Lasso Logistic Regression models in predicting financial distress in Kenya from 2018 to 2022. Lasso Logistic Regression emphasizes liquidity and profitability ratios, showing improvement in 2022. Evaluation metrics like confusion matrices reveal fluctuating performance, with Altman Z Score consistently outperforming Lasso Logistic Regression in accuracy and recall. The study addresses the need for predictive models in Kenya's context and highlights key variables. Recommendations include proactive measures for flagged companies, improving data quality, tailoring models to industries, incorporating economic indicators, and refining models through cross-validation.

Idiomas

Inglés

Profesional

Alemán

Principiante

Habilidades

Data Analytics

SQL

Financial Analysis

Financial Accounting

R Statistical

Accounting Practices

Localized conecta a estudiantes universitarios y recién graduados con expertos de la industria y empleadores.

Para estudiantesAprende en LocalizedEventosTrabajosExpertos

PrivacidadTérminosMapa del sitio

©2025 Localized, Inc. Todos los derechos reservados.

¿Listo para una experiencia personalizada? Utilizamos cookies y tecnologías similares para adaptar nuestro sitio especialmente para ti. Al hacer clic en 'Aceptar', nos das luz verde para utilizar cookies y tecnologías similares. 🍪